

Thanks for joining us! Today's presentation will begin shortly.

If you have questions or want to report any technical issues, contact us at info@dhpsny.org or (215) 545-0613 ext.317

kkrish@lesscarbonmoreculture.com

Today's outline

- Review of temperature, RH, and what is dew point?
- Passive and mechanical controls
- How dew point determines actions
- Interpreting profiles
- Tips and other considerations

Temperature

- Measure of the speed of the molecules
- Avoid sustained highs
- Largely irreversible "natural aging"
 - Visual or structural
 - Accelerates processes

Relative humidity (*Relative to what?*)

- Measure of the water vapor content of air
- Generally maintain between 30-60%
- Variety of types of damage
 - Mechanical
 - Biological
 - Corrosion

Dew point

The temperature at which water vapor in the air becomes saturated and water droplets begin to form

Dew point

Click to Solve for: Temperature	Click to Solve for: ● Temperature ● % RH ● Dew Point	Click to Solve for: ● Temperature ● % RH ● Dew Point
60 68 50	70 50 50	80 34 50

http://www.dpcalc.org/

Sustainable Heritage

(At a constant dew point,) temperature and relative humidity have an inverse relationship

Sustainable Heritage

Y

Passive and mechanical controls

If you do not have mechanical control:

If you do not have mechanical control:

If you have mechanical control:

Cooling coil operation

Sustainable Heritage

Passive and mechanical controls

Which dew point gives you more options?

 60°F
 50°F
 40°F

 dew point
 dew point
 dew point

Passive and mechanical controls

The difference with desiccant wheels

Passive and mechanical controls

Humidifiers

Using dew point to determine set points

http://www.dpcalc.org/

How dew point determines actions

How dew point determines actions

Using dew point to determine timing of set points

A tale of two RHs...

405 207 80°F 70°F Dew point 60°F (absolute 50°F moisture) 40°F change 30°F

Interpreting profiles

Profile: Curved with flat portions

Interpreting profiles

Profile: Flat with fluctuating portions

Sustainable Heritage

Interpreting profiles

Interpreting profiles

Signature

Profile: Multiple mechanical systems

With an additional moisture load:

Side note: Crossing the dew point

Can be an issue when:

- There is no insulation/vapor barrier in the walls
 - Result- condensation occurs on or within the wall cavity, often leading to mold germination
- Moving an object from a space with one set point to a space with different set points
 - Result- condensation occurs on object

Crossing the dew point

Risk present when the temperature of the object is lower than the dew point of the space it is entering

Tips for analysis

- Try starting your data analysis with dew point- what information can you get before going to temperature and RH?
 - Look at different combinations of datasets
 - Build relationships with Facilities department
 - Gather documentation

Tips for analysis (cont.)

- Keep an eye on what your dew point is doing for the next six months:
 - In spring, do you see more fluctuations in moisture/RH than usual?
 - In summer, does the RH go higher than you want?
 - In winter, does the RH go lower than you want?

Summary

- Dew point is the basis for controlling moisture in the environment for preservation
- Consider passive means first, and mechanical to the extent necessary
- Dew point can be used to determine set points, seasonal changes, and response to issues

Summary (cont.)

- Dew point curves can be described through different profiles along a spectrum
 - Different features and combinations of datasets tell how the system is running to address preservation and energy efficiency

Questions

kkrish@lesscarbonmoreculture.com